Modeling and visualizing semantic and spatio-temporal evolution of topics in interpersonal communication on Twitter

Interpersonal communication on online social networks has a significant impact on the society by not only diffusing information, but also forming social ties, norms, and behaviors. Knowing how the conversational discourse semantically and geographically vary over time can help uncover the changing dynamics of interpersonal ties and the digital traces of social events. This paper introduces a framework for modeling and visualizing the semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. The framework consists of (1) a topic modeling workflow for modeling topics and extracting the evolution of conversational discourse; (2) a geo-social network modeling and smoothing approach to projecting connection characteristics and semantics of communication onto geographic space and time; (3) a web-based geovisual analytics environment for exploring semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. To demonstrate, geo-located and reciprocal user mention and reply tweets over the course of the 2016 primary and presidential elections in the U.S. from Aug. 1, 2015 to Nov. 15, 2016 were analyzed. The large portion of the topics extracted from mention tweets were related to daily life routines, human activities and interests such as school, work, sports, dating, wearing, birthday celebration, music, food and live-tweeting. Specific focus on the analysis of political conversations revealed that the content of conversational discourse was split between civil rights and election-related discussions of the political campaigns and candidates. These political topics exhibited major shifts in terms of content and the popularity in reaction to primaries, debates, and events throughout the study period. While civil rights discussions were more dominant and in higher intensity across the nation and throughout the whole time period, election specific conversations resulted in temporally-varying local hotspots that correlated with locations of primaries and events.

Keywords: Geo-social networks, interpersonal communication, geovisual analytics, topic modeling, Twitter

1 Introduction

The increasing availability of large-scale communication data on Location-based Social Networks (LBSN) has provided an unprecedented opportunity to understand the dynamics of
the society, the underlying interpersonal relationships between people, and how these relationships vary across geography and time (Andris, 2015; Lin et al., 2015). Extracting semantics from conversational discourse is critical for inferring human behavior, ideological and attitudinal similarity between individuals (Adamic et al., 2014), common topics and way of speaking (McCallum et al., 2007), group identities (Tamburrini et al., 2015) and spatio-temporal evolution of topical themes (Pozdnoukhov & Kaiser, 2011). Natural language processing methods have commonly been used to analyze georeferenced textual data to extract location-based semantics, detect geographic events, recommend places and friends based on user location and similarity of shared content between users in social media posts (Chae et al., 2012; Hu et al., 2013; Liu et al., 2013; Pozdnoukhov & Kaiser, 2011; Steiger et al., 2016; Zhang et al., 2009). However, there has been little work (Chen et al., 2016; Kim et al., 2016; Koylu, 2018b; Pozdnoukhov & Kaiser, 2011) focusing on semantic evolution, and how semantics of communication vary across the social network, geographic space and time. This is due to both the lack of information on the content of interpersonal communication as a result of privacy policies and appropriate methodologies that are capable of extracting topical evolution and thematic patterns in a social network embedded in geographic space and time.

There is a critical need to analyze the spatial distribution of social relationships, and extract semantics of interpersonal communication. This paper introduces a framework for modeling and visualizing the semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. There are three main contributions of this paper. First, a topic modeling workflow is introduced for extracting topical themes and the evolution of conversational discourse from a time-stamped and geo-located interpersonal communication network. This framework is generic and can be applied
to other social media and interpersonal communication datasets. Second, a geo-social network modeling is introduced to take into account micro-scale dyadic relationships in the modeling of aggregate level spatial interactions. The new modeling approach enhances the previous work described by Koylu (2018b), which models macro-scale and aggregated connections (spatial interactions) among areas while disregarding the micro-level dyadic communication pairs – the connections of the social network. The geo-social network modeling approach aims to fill the knowledge gap between micro-scale social network analysis and macro-scale analysis of spatial interactions. Third, a web-based geovisual analytics environment is introduced for interactive exploration of the semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. To demonstrate, geo-located and reciprocal user mention and reply tweets over the course of the 2016 primary and presidential elections in the U.S. from Aug. 1, 2015 to Nov. 15, 2016 were analyzed.

2 Related Work

2.1 Interpersonal communication on Twitter

The emergence of social media emphasized the importance of online interpersonal communication and ties in diffusing information and adopting behavior in the public sphere. Through the use of its functions of retweets and mentions, Twitter enables a shared conversational context by exchanging of messages (Boyd et al., 2010). Retweets and mention/reply functions have been found to influence the structure of conversational discourse if it is especially related to politics (Maireder & Ausserhofer, 2014). Previous work
revealed that Twitter connects diverse social networks with very different actors, and modes of communication (Maireder & Schwarzenegger, 2012; Segerberg & Bennett, 2011).

Bruns and Moe (2014) categorize the modes of communication on Twitter into follower-followee relationships, hashtag-based exchanges, and interpersonal communication supported by user mentions and replies. Following relationship allows users to follow the updates originating from the followed user. Following relationships are often not reciprocal, because a user who is followed by another user is not required to follow that user back. Secondly, hashtags are used to tag tweets with a certain topic, which makes it discoverable by other users, and act as a connector among users. However, because the general purpose of the use of hashtags is to increase the visibility of tweets, it cannot be assumed that all users will follow all tweets containing the hashtag (Bruns & Moe, 2014). Thus, hashtags are not suitable for inferring interaction among users. On the other hand, mentions and replies allow users to join conversations. When a user replies to another user’s tweet, the @username of the person the user is replying to appear in the beginning of the tweet. On the other hand, a user can mention another user by including her/his @username anywhere in the body of the tweet. When a user mentions or replies to another user, the recipient is notified by the incoming message. Replied tweets indicate joined conversation between the users but not all mentions result in a conversation, especially when the mentioned users do not reply back. This is often the case when the mentioned account belongs to a celebrity user, brand, or institution (Bruns & Moe, 2014). However, replied mention tweets indicate direct personal communication in the form of back-and-forth conversations which one can infer social interaction between users (Cogan et al., 2012; Hong et al., 2011). Previous work analyzing the structural characteristics of mention and reply tweets found that the distribution of
mentions are scale-free. This indicates that there are few number of users with very large number of mentions, while most users mention others or are mentioned by others only a few times (Kato et al., 2012). Also, whether mentions, retweets, or following relationships, most online interactions occur between users that are in close geographic proximity (Compton et al., 2014; Han, Tsou, & Clarke, 2017; Jurgens, 2013; Yamaguchi et al., 2013).

2.2 Topic extraction and evolution
Latent Dirichlet Allocation (LDA) has been successfully employed to provide location-based recommendations, detect event locations, geographical patterns of linguistic variation, and topical themes from Twitter data (Chae et al., 2012; Lai, Cheng, & Lansley, 2017; Lansley & Longley, 2016; Y. Liu, Ester, Hu, & Cheung, 2015; Pozdnoukhov & Kaiser, 2011). LDA is based on term frequency-inverse document frequency (tf-idf), which takes into account the frequency of words in the corpus (Salton & McGill, 1983). The tf-idf reflects how important each word is to a document in a collection of documents or corpus, and its value increases proportionally to the number of times a word appears in a document. (Goldstone & Underwood, 2012). The tf-idf measure is a “bag of words” approach, which does not take into account the positions of the words relative to each other. The terms occurring in a large proportion of tweets are often not informative, and more specific terms occur only in a few tweets which can be captured by the tf-idf value.

Running a topic model on a corpus of tweets is challenging due to the short-text problem (Yan et al., 2013) which is caused by the 140 character limit. Because the limit does not allow multiple co-occurrences of words being used within the same tweet, the extracted topics exhibit increased uncertainty. To address the issue and derive robust model results, aggregation of tweets by keyword similarity (Grant et al., 2011), by the same user (2013),
temporal binning, spatial and space-time binning (Gerber, 2014) were successfully employed. In addition to the methods of natural language processing, a variety of data mining methods such as support vector machines (Sakaki et al., 2010), deep convolution neural networks (Tang et al., 2014), wavelet analysis (L. Chen & Roy, 2009), principal component analysis (Huang et al., 2016), and space-time scan statistics (Cheng & Wicks, 2014) have also been used for extracting linguistic features, topics and sentiments from geo-referenced textual data such as tweets, Yelp ratings and comments, and Flickr image tags.

As topics in a corpus with temporal information emerge, develop and decline over time, detecting topical evolution has become an important area in text mining. Topic detection and tracking methods utilize heuristics and probabilistic models, and employ topic similarity indicators to construct temporal organization of topics (Allan, 2002; D. Kim & Oh, 2011; Zhang et al., 2005). A further clustering approach is applied to the topic similarity matrix to identify long-term topic chains which provide coherent topics. On the other hand, short-term or temporary topics may capture outlier themes that can be related to events. Other methods for detecting topical evolution are temporal segmentation (Gad et al., 2015), evolutionary clustering (Chakrabarti et al., 2006; Chi et al., 2007; Xu et al., 2008) and dynamic topic models (Blei & Lafferty, 2006; J. Hu, Sun, Lo, & Li, 2015; Wang et al., 2006) which consider documents’ timestamps as well as word co-occurrences. An in-depth discussion of the methods for detecting topical evolution can be found in Cui et al. (2011) and Hoque & Caranini (2016).

3 Methodology

Figure 1 illustrates the framework for modeling and visualizing the semantic and spatio-temporal evolution of topics among reciprocal communication pairs. First, the pre-processing
phase is used to clean and partition the data into overlapping time windows, identify home location (area) for each users within each time window, and construct a temporal sequence of geo-located reciprocal mention networks. At this phase, mentions among each pair of users are combined into temporally organized document collections called chat histories. Topic extraction phase is then used to perform a separate LDA on the document collection of each time window. The temporally-sequenced topic models produce (1) a series of word-topic matrices which represent the prominent words and their probabilities in each topic; and (2) a series of document-topic matrices which represent the prominence of topics and their probabilities in each document (reciprocal mentions) in each time window. The word-topic and document-topic matrices of the topic model series are then used to group similar topics, and identify topic chains that illustrate temporally consistent topics. In the pattern exploration phase, a new geo-social network modeling approach is introduced to project the social connections and the probability of conversational topics onto geographic space and time. Finally, the topic evolution and spatio-temporal patterns are linked in a web-based geovisual analytics environment to explore the changing dynamics of conversational discourse in reciprocal mentions.
3.1 **Pre-processing**

First, geo-located tweets within the contiguous U.S. are collected given a geographic bounding box using the Twitter Streaming API for a given time period. Tweets from non-personal user accounts such as job advertisements, local weather reports, emergency reports, traffic crash reports, and news feeds are filtered out using the source field of the metadata provided by the API. Tweets generated by external applications are also excluded because such tweets do not include conversational context between users. For example, Foursquare application allows automatic generation of a tweet’s content by tagging the location of a user: “I’m at Iowa City; IA”. To prevent any bias caused by large volume of user mentions produced by fewer active users, e.g., celebrities (Lansley & Longley, 2016), tweets from the users with more than 3000 followers are also removed at this phase.
3.1.1 Temporal partitioning and network construction

Modeling a temporally-varying network as a sequence of static graphs reduces the strong fluctuations of fine-grained interactions, and allows detection of general trends of evolution thanks to temporal aggregation (Wei & Carley, 2015). In this study, interpersonal communication data are partitioned into a sequence of static graphs. In order to capture the patterns in between consecutive time periods, an overlap factor of 50% is applied to monthly time-windows. Overlapping (or moving) time windows help detect reciprocal links that fall in between time windows, and prevent abrupt and artificial changes in the mention network and the patterns of topical and spatio-temporal evolution. In this study, the time windows start either from the 1st day of a month and expand to the 1st day of the next month, or start from the 15th day of a month and expand to the 15th day of the next month. Reciprocal communications are included in a time window if a pair of users communicate both ways (send and receive mentions) with each other at least once within the monthly time span. \(R^w_t (t_{\text{min}}, t_{\text{max}}) \) represents a temporal sequence of reciprocal mention graphs, \(R^w_{t_{\text{min}}}, R^w_{t_{\text{min}}+w/2}, \ldots, R^w_{t_{\text{max}}} \), where w represents the size of a time window in a given time unit (i.e., one month). A reciprocal graph \(R^w_t \) consists of nodes defined by individuals \(I = \{ i_1, \ldots, i_n \} \), and a set of reciprocal connections defined by document collection (chat histories) between individuals \(D = \{ d^s_{ij} \} \), where \(i \in I, j \in I, i \neq j, t \leq s \leq t + w \) and \(d^s_{ij} \) represents the chat history between individual i to j within the given time window.
3.1.2 Locating users

Geo-located tweets consist of geo-tagged tweets with exact geographic coordinates and place-tagged tweets which provide location information at the level of neighborhood, city, state or country. If the location is provided by a place name, then the centroid of the area (e.g., the centroid of the bounding box of a city) is used to define the coordinates of the tweet. Previous work (Stefanidis et al., 2013) reported that the percentage of geo-tagged tweets range from 0.5 to 3%, and geo-tagged tweets increase during events such as disasters. A geo-located mention tweet includes only the location of the sender who mentions another user (recipient). Since individuals are mobile, locations of tweets from each user are variable across space, and a representative location of the recipient of a mention can be derived only if the recipient has generated at least one geo-located tweet in the sample. In this paper, tweet locations are overlayed with census data (e.g., county boundaries) to identify a home area (e.g., county) for each user based on the most frequent tweet location. Each individual is then assigned to an areal boundary (i.e., county) for both sustaining the privacy of users with exact geographic coordinates, and make use of place-tagged tweets which form the majority of geo-located tweets (~87%). Instead of using the most frequent location, one can determine the home location based on tweets posted at night time where individuals are assumed to be home. In this paper, geo-located tweets with exact coordinates and place names that correspond to an area at least at city scale are used, whereas tweets with place names at the state and country level are disregarded.

3.2 Topic extraction and evolution

The second phase is used to extract topical themes from chat histories defined by the edges of
the reciprocal mention network of each time period. LDA is performed on the collection of chat histories $C_{R_t^w}$ to derive k number of topics within a time window R_t^w. The topic model classifies each chat history with a multivariate set of topics with differing probabilities. For example, the conversations between Robert and Brian in September might be classified as 50% about sports, 20% about video games, 10% about food, and 20% about the other topics.

Because the conversations are dynamic as new terms, phrases and topics emerge in the conversation constantly, a separate LDA model is trained based on the collection of chat histories within each monthly overlapping time windows. LDA is a Bayesian probabilistic model of documents that assumes a collection of k topics defined as a multinomial distribution over words (Blei, Ng, & Jordan, 2003). Chat histories (documents) that contain the content of the tweets exchanged between all pairs of users within a month are used to train the topic model. This strategy is based on classifying conversations rather than classifying tweets aggregated by an individual user, an area, or a time period.

$$P(Z|W, D) = \frac{W_{Z+\beta_w}}{\text{total tokens in } Z + \beta} * D_{Z 是 \infty}$$

For each possible topic Z, $P(Z|W, D)$, the probability that word W came from topic Z, is calculated by the multiplication of the normalized frequency of W in Z with the number of other words in document D that already belong to Z ($D_{Z 是 \infty}$). β and β_w are hyper-parameters that represent the chance that word W belongs to topic Z even if it is nowhere else associated with Z (Blei et al., 2003). Based on this formula, LDA iteratively goes through the collection, word by word, and reassigns each word to a topic. Words become more common in topics where they have higher frequencies; and thus, topics become more common in documents where they occur more often. After each iteration, the model becomes more consistent as
topics with specific words and documents. The model eventually reaches an equilibrium that is as consistent as the collection allows. However, it is not possible to obtain a perfectly consistent model because topics and words do not have a one-to-one relationship (Goldstone & Underwood, 2012). The Mallet Toolkit (A. K. McCallum, 2002) is used to implement the LDA model. A separate LDA is performed on the document collection of each time window. Aggregated tweets were tokenized, and words were converted into lower case, and stop words (e.g., commonly used words such as “the”, “of”, “am”) from 28 languages were excluded prior to training the model using the Mallet Toolkit. Stemming is not applied as stemming adds noise to the results, and do not improve the interpretation (Schofield & Mimno, 2016).

After extracting topics from the chat histories in each time window, the next step is to identify the temporal evolution of topics. In order to detect and track the evolution of topics, a measure of topic similarity can be computed using the word-topic and document-topic matrices of the temporally-sequenced topic models. In this paper, pairwise similarity between topics are calculated using cosine similarity, which takes the inner product space that measures the cosine of the angle between two non-zero vectors of words that form each topic with their term (word) frequencies (Huang, 2008). The cosine similarity of two topics ranges from 0 to 1, and can be described in percentages.

By using cosine similarity, topics in each time window are compared to topics both within the same window as well as topics across all time windows to construct a network of topic similarity. The purpose for constructing a network of topic similarity is to capture topic chains that illustrate temporally consistent topics, and their semantic evolution based on appearance, disappearance, merging and splitting behaviors of topics. Within the network of
topic similarity, a node represents a topic in time interval t, and an edge represents the cosine similarity between two topics. In order to identify similar topics, a modularity-based community detection (Clauset, Newman, & Moore, 2004) is performed based on the topic similarity network. Once a topic chain is identified, measures of normalized assignment and strength evolution can be calculated using the document-topic matrices in order to evaluate how the strength and content of topics evolve over time (Hu et al., 2015). The normalized assignment (NA) of a topic z_k represents the total presence of the topic throughout the reciprocal mentions in that given time window T_i, and defined as:

$$NA (z_k, T_i) = \frac{\sum_{j=1}^{T_i} \theta_{d_{ij}}[k]}{|T_i|}$$

The strength evolution (SE) of a topic z_k can then be derived by computing NA values for each time period (Hu et al., 2015):

$$SE(Z_K) = [NA (z_k, T_1), ..., NA (z_k, T_t)]$$

The content of each topic is determined by the words (i.e., terms) that form each topic, and the term frequencies. The Term-Frequency (TF) illustrates the probability of a word belonging to a topic at a given-time window. A higher term-frequency indicates that the topic has a strong relationship with that term. TF of a word w_k in topic z_k at time window T_i is defined as (Hu et al., 2015):

$$TF(w_n, z_k, T_i) = \emptyset_{z_{ik}}[n]$$

The content evolution (CE) of a topic z_k is derived by computing TF values for words used in that topic for topic modeling results of each time window (Hu et al., 2015):

$$CE(z_k) = \{ TF(w_1, z_k, T_1), ..., TF(w_1, z_k, T_t) : TF(w_n, z_k, T_1), ..., TF(w_n, z_k, T_t) \}$$
3.3 The geo-social network modeling

The topic models classify each chat history in each time period into a set of topics with differing probabilities. A classified chat history illustrates a multivariate set of topics of an undirected edge that represents communication between two individuals in a certain time window. In order to translate the topical probabilities among individual communication pairs onto a geographic area, one needs to determine the reciprocal connections associated with that area. For example, the average probability of a topic such as civil rights can be calculated for an area by simply dividing the cumulative probability of the topic by the total number of user pairs within that area. There are two major problems with such an approach.

First, considering the connections only within the area may not include the actual extent of the social network, i.e., which is defined as the ego-centric network of an area. This is because individuals have connections (i.e., friends and family), acquaintances (e.g., friends of friends, or individuals who live nearby) or online friends who may live elsewhere but could still be considered within the ego-centric network of an area.

Second, sparse sampling of the reciprocal mention pairs across small areas (i.e., the small area problem in spatially-embedded networks) results in spurious variations in flow (connection) and node measures. Spatially adaptive kernel smoothing have been used to smooth flows and measures in networks embedded in space and space-time (Guo & Zhu, 2014; Koylu & Guo, 2013; Koylu et al., 2014). Using the adaptive kernel, Koylu (2018b) introduced an approach to expand the search space to include reciprocal connections from geographic neighbors that are similar in characteristics such as connection or node density. However, the approach introduced in Koylu (2018b) focuses on aggregated communication
flows among geographic areas and does not take into account micro-level dyadic relationships in the social network.

The effect of geographic proximity on formation of social ties has been studied widely in the literature (Backes et al., 2017; Backstrom, Sun, & Marlow, 2010; Mok, Wellman, & Carrasco, 2010). Using observational relational data through surveys and interviews, Eagle et al. (2009) showed strong correlation between mobility and spatial co-occurrence driven relationships, and also highlighted the distinctness of the relationships in terms of recency and salience of interactions. Although geographic proximity plays an important role in tie formation among people, dyadic relationships that are distant apart are also essential in information diffusion, and inferring socially-linked spatial communication patterns (Andris, 2015). The geo-social network modeling approach introduced in this paper enhances the previous method introduced in Koylu (2018b) by modeling micro-level dyadic relationships within the social network in addition to considering potential social connections from nearby geographic locations. The new approach first considers social connections (e.g., friends, family, and friends of friends), and then potential connections within nearby areas (e.g., neighbors and acquaintances).

3.3.1 Modeling the ego-centric network of an area

The ego-centric network of the area A_i in a time period t is defined as the list of reciprocal pairs associated with an area A_i: $LF(A_i, s)_t$. The algorithm to determine the ego-centric network of an s-size area (i.e., the total number of links) has two phases, and is explained in Figure 2. In Figure 2.a, a black node (e.g., a) represents a user within the area A_i, and a solid black line represents a link between two users who are both within the same area (e.g., a-b).
A dark-gray node \((e.g., g)\) represents a first-order network neighbor (friend), who lives outside the area \(A_i\), and has a link with a node (user) within the area \((i.e., c)\). A link between a black node and gray node is denoted as a first-order link, and illustrated by a long-dashed line \((e.g., c-g)\). A light-gray node \((e.g., f)\) illustrates a second-order network neighbor who is a friend of a first-order friend \((i.e., e)\). The link between a second-order friend and a first-order friend \((e.g., e-f)\) is denoted as a second-order link and illustrated by a medium-dashed line.

Figure 2.a illustrates the first phase of the algorithm. First, the size of the neighborhood \(N(A_i, s)\) is set to include \(s\) number of links in order to address the sparsity of connections in areas with small populations. If the total number of links are above the threshold \(s\), the ego-centric network is the same as the initial network of the area, which consists of the first order links that are within and outside the area. If \(N(A_i, s)\) is below the threshold, the second-order links (connections with friends of first-order friends) are added to the initial network. If \(N(A_i, s)\) is still below the threshold, the second phase of the algorithm is performed to include connections from geographic neighbors in the ego-centric network of the area (Figure 2.b). In the second phase, an adaptive kernel smoothing method is introduced to identify the ego-centric network for an area, and smooth the flows and network measures. Neighborhood selection process in the smoothing method is determined based on the total number of connections associated with the focal area. The ego-centric network of \(A_i\) is geographically expanded to include connections from nearby areas until, \(N(A_i, s)\), the total number of connections, reaches the threshold \(s\). In this paper, this threshold is set as 1,000 reciprocal connections.

A major drawback of the adaptive neighborhood approach is the attribute uncertainty caused by combining connections from areas with distinct characteristics such as high density
urban areas and low density rural areas. Specifically, the areas with high density of connections would dominate the areas with low density observations if they are considered in the ego-centric network of low-density areas. Koylu (2018b) introduced a connection similarity constraint that is based on the number of reciprocal pairs within an area, and the constraint is used to take into account similarity between the characteristics of areas in the neighborhood selection process. First, the k-nearest areas of the A_i are determined based on geographic distance, and the difference between the number of reciprocal pairs of the focal area, $N(A_i, s)$ and its neighbors are computed. If the difference is smaller than the standard deviation of the number of reciprocal pairs within all areas in time t

\[\sqrt{(N(A_i, s) - N(A_j, s))^2} < \sigma, \]

then the k-nearest neighbor is included in the neighborhood of A_i, and its connections are added to the ego-centric network of A_i which is denoted by $LF(A_i, s)$.

To illustrate the neighborhood selection process and the geo-social network modeling algorithm, assume the threshold $s = 50$ for determining the ego-centric network of A_i in Figure 2.a. This threshold indicates that $N(A_i, s)$ must consists of at least fifty first-order connections within and outside the area. However, $N(A_i, s)$ is 23 in the first phase. After adding the second-order links, $N(A_i, s)$ is increased to 34, which is still below the threshold. To further expand the ego-centric network, the second phase of the algorithm is implemented to include neighbors from the k-nearest geographic areas that do not violate the connection similarity constraint (Figure 2.b). The area A_j is the closest geographic neighbor of A_i, and the root of the squared difference between $N(A_i, s)$ and $N(A_j, s)$, i.e., the number of first order connections in A_i and A_j, is less than the standard deviation of the number of connections for all areas. Thus, the first-order connections within and outside of A_j: $LF(A_j, s)$, are added to
the ego-centric network of A_i. This increases the number of connections to 39, which is still below the threshold. Next, the second-order links of A_j are added, which finally increases $N(A_i, s)$ to 52. If the threshold was not met, the next step would have been to add the connections from the next closest geographic area that satisfies the similarity constraint until the threshold is reached. In this paper, the number of connections is used for defining the threshold, however, one can use the number of users, or structural characteristics such as number of triangles or cliques in the ego-centric network.
Figure 2. The geo-social network modeling and neighborhood selection
3.3.2 Smoothing topical probabilities in space-time

After selecting the ego-centric network, a kernel function can be incorporated to weigh each flow (connection) within the network based on the distance of nodes to the focal area. This process would weigh mention pairs where both users are within the area more than the pairs that only one user is in the area, or none of the users are in the area (i.e., in the context of second-order links, the users may not be within the focal unit area). The most commonly used kernel functions include the uniform kernel, the Gaussian kernel and triangular (linear) kernel. In this paper, the uniform kernel, which assigns the same weight to each connection, is used. This choice is optimal within the context of online communication since the kernel smoothing with a distance decay function such as the Gaussian or the triangular kernel may result in undesired impact of diminishing the influence of first and second order links outside the focal areas.

Given the ego-centric network of an area \(A_i \) in time window \(t: LF (A_i, s) \), the weighted average of the topical probabilities are calculated using the following formula.

\[
P_z(A_i^t | \theta) = \frac{\sum_{i \in LF (A_i, s)^t} \sum_{j \in LF (A_i, s)^t, i \neq j} w_{A_i}(i, j)^t * p_z(i, j)^t}{N (A_i, s)^t}
\]

\(P_z(A_i^t | \theta) \) is the average probability of topic \(z \) given the probability of all topics (\(\theta \)) in the neighborhood of \(A_i \): \(N (A_i, s) \) within the time interval \(t \). \(p_z(i, j)^t \) is the probability of topic \(z \) in conversations among the users \(i \) and \(j \) in time window \(t \). \(w_{A_i}(i, j)^t \) is the weight of the connection determined by a kernel function, and the distances of the individuals \(i \) and \(j \) to the area of the area \(A_i \). The uniform kernel function is used in this paper, and the weigh equals to
1 for all connections. \(N(A_i, s)^t \) is the total number of reciprocal pairs in the neighborhood of \(A_i \) at time \(t \). \(LF(A_i^t, s) \) is the list of flows in the \(s \)-size network of \(A_i \) within the time interval \(t \).

4 Results

Geo-located tweets in the Contiguous U.S. between Aug. 1, 2015 and Nov. 15, 2016 were collected using the Twitter Streaming API. The percentage of the tweets with exact coordinates was 12.4% in this dataset. Tweets with place names that were at the state or country level were excluded, which corresponded to 15% of place-tagged tweets. After the initial filtering process, the dataset consisted of 898,182,251 tweets and 7,321,492 users. The number of users with more than 3000 followers was 217,658. The number of tweets that included a user mention was 320 million (35% of all tweets), and 4.8 million users were mentioned at least once. The monthly frequency of reciprocal mentions had intense fluctuations in Oct. and Dec. 2015, and Mar. 2016, and there was an overall increasing trend towards the end of election period with an average of approximately 225 thousand reciprocal communication pairs per month (Figure 3).

Figure 3. The number of reciprocal mention pairs between Aug. 1, 2015 and Nov. 15, 2016 using a one-month moving average window.
4.1 Parameter selection for the topic model series

This section presents the criteria and experiment results for parameter selection in the topic modeling workflow. In order to determine the optimum number of topics that minimize the number of duplicate topics, an evaluation was performed using topic models with 25, 50, and 100 topics with 2,000 iterations for each of the overlapping time windows. In a topic model with fewer number of topics, unique topics are often combined into fewer topics, whereas larger number of topics result in topics with overlapping content (Newman et al., 2010). In order to find the optimum number of topics across all time periods, a topic model with each k number of topics (i.e., 25, 50 and 100) were compared to one another consecutively for each time window. Cosine similarity was used to measure the similarity of topics per time window. The following criteria was used to determine unique topics between two model outputs: (1) the topic must have a probability threshold above 1% in order to eliminate noisy topics that only exist in a small number of documents. (2) The topic in the model with larger number of topics should have a cosine similarity less than 20% with any of the topics of the model with smaller number of k topics. Following this criteria, the 100-topic models were compared with the 50-topic models, and the 50-topic models were compared with the 25-topic models for each time window. The 100-topic models introduced an average of 25 overlapping topics within the same model, and an average of 1.5 unique topics as compared to the 50-topic models in all time periods. On the other hand, the 50-topic model introduced an average of 9 overlapping topics within the same model while introducing an average of 1.87 unique topics as compared to the 25-topic models in all time periods. Finally, the 25-topic model introduced an average of 3 overlapping topics within the same model. The
models with $k = 50$ number of topics were selected as it produced less overlapping topics than 100, and more distinct topics than 25.

4.2 Topic chains, content and strength evolution

A separate topic model was used to train chat histories as documents for each of the thirty overlapping time periods. Fifty topics were extracted from each of the monthly collection of chat histories, which generated a total of 1,500 topics. Cosine similarity between the word frequency vectors of each topic in all time periods were computed, and a network of topic similarity was constructed to link topics within the same time period and topics from different time periods. Within the network of topic similarity, a node represents a topic in a time interval, and an edge represents a binary link that indicates whether a pair of topics can be considered as similar. A threshold of 80% cosine similarity was used to determine if two topics are similar. As a result, the topic similarity network consisted of 1,500 topics, and 6,746 edges that illustrate the number of topic pairs that are similar to each other at a rate greater than 80%.

A modularity-based community detection algorithm (Clauset et al., 2004) was performed on the topic similarity network in order to group similar topics, extract topic chains, and merging and splitting topics. Large communities detected by the community detection algorithm represent topic chains that connect similar topics in a temporal sequence. Topic chains that are formed by topics in a time series are often semantically meaningful, whereas singleton topics are less coherent (Kim & Oh, 2011). The top sixteen largest topic chains with the top twenty words with the highest cumulative term frequencies across all time periods are reported in Table 1. Labels of the latent topics can be inferred using the combination of the words, and observing the original reciprocal mention tweets classified by
each topic. Among the temporally consistent topic chains are work and school activities, sports fandom (Bruns et al., 2013); daily routines such as watching, drinking, wearing, music and eating (Java et al., 2007), and election and civil rights topics that are related to the given time-period (Table 1).

Table 1 Temporally consistent topic chains of reciprocal communication. The words with the highest term frequencies in all time periods were selected to illustrate each topic.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil rights</td>
<td>black, point, white, agree, wrong, true, understand, read, lot, women, ppl, person, real, problem, police, racist, matter, cops, opinion, thought</td>
</tr>
<tr>
<td>Elections</td>
<td>trump, vote, hillary, bernie, obama, president, gop, cruz, support, clinton, voting, party, america, country, win, donald, candidate, sanders, hrc, election</td>
</tr>
<tr>
<td>School</td>
<td>school, class, year, high, college, classes, math, test, grade, teacher, study, semester, senior, freshman, english, week, luck, paper, middle, kids</td>
</tr>
<tr>
<td>Sports</td>
<td>game, team, year, win, play, baseball, season, coach, football, fans, games, cubs, playing, player, soccer, congrats, beat, won, luck, big</td>
</tr>
<tr>
<td>Birthday</td>
<td>birthday, hope, bday, pretty, ily, beautiful, amazing, hbd, babe, gorgeous, enjoy, awesome, lots, sweet, wonderful, friend, thx, baby, boo, wait</td>
</tr>
<tr>
<td>Watching</td>
<td>watch, movie, watching, season, episode, watched, movies, netflix, favorite, star, wait, episodes, read, story, film, book, started, series, finished, loved</td>
</tr>
<tr>
<td>Drinking</td>
<td>beer, drink, cheers, drinking, wine, water, coffee, bottle, drunk, nice, bar, beers, shots, awesome, alcohol, enjoy, drinks, tea, ice, party</td>
</tr>
<tr>
<td>Dating</td>
<td>baby, cute, babe, ily, avi, beautiful, wait, boo, guys, friend, hot, sweet, wow, luv, literally, perfect, bae, pretty, heart, friends</td>
</tr>
<tr>
<td>Bro</td>
<td>bro, y'all, bruh, tho, yea, bout, boy, hell, fam, real, smh, ima, lit, lil, tryna, chill, yall, way, work, wit</td>
</tr>
<tr>
<td>Wearing</td>
<td>hair, wear, wearing, shirt, black, white, color, shoes, red, cut, blue, dress, buy, nice, pants, cute, long, clothes, pair, makeup</td>
</tr>
<tr>
<td>Music</td>
<td>song, music, listen, album, songs, listening, drake, heard, band, favorite, video, hear, play, sing, check, rap, playing, lyrics, live, kanye</td>
</tr>
<tr>
<td>Video games</td>
<td>play, game, playing, games, team, xbox, played, guys, join, stream, cod, win, link, fun, skype, ill, beat, add, watch, send</td>
</tr>
<tr>
<td>Money</td>
<td>money, pay, buy, work, free, tickets, job, ticket, paid, card, bought, check, store, sell, lot, worth, paying, working, tax, price</td>
</tr>
<tr>
<td>Food</td>
<td>eat, food, pizza, chicken, cheese, eating, bring, ice, cream, hot, ate, dinner, chocolate, taco, breakfast, cake, fries, milk, coffee, sauce</td>
</tr>
<tr>
<td>Work</td>
<td>work, wait, weekend, week, coming, guys, friday, excited, party, saturday, fun, ready, year, visit, sunday, y'all, break, trip, summer, friends</td>
</tr>
<tr>
<td>Bro birthday</td>
<td>bro, birthday, big, brother, dude, fam, homie, boy, congrats, lil, broth, hope, bday, buddy, bud, dawg, preciate, luck, guy, stay</td>
</tr>
</tbody>
</table>

In order to demonstrate the utility of the proposed methodology, this paper focuses on the two topic chains: civil rights and elections.
Figure 4 illustrates the content evolution of the two topics in six monthly time periods. From this figure, one can identify the content evolution of topics by tracing the appearance of new terms, disappearance, the changing order and prevalence of the terms. These monthly periods were selected based on the most distinct shift of content, and the merging events of election and civil rights topics. A topic is considered as a merged topic (i.e., purple) when its cosine similarity is equal to or above 80% for both civil rights and election topics from the previous and next time periods. The ordering of the words in term tables indicates the changing importance (frequency) of terms in election topic over time, and each time period is labelled by the major events associated with conversations in each time period. These events were Iran Deal (Aug. 2015), the terrorist attacks in Paris and San Bernardino (Dec. 2015), primary elections (Mar. 2016), black killings (Jul. 2016), Presidential Debates (Oct. 2016), and Presidential Elections (Nov. 2016). The civil rights and election conversations existed separately or were merged during time periods when significant events happened. The last time period prior towards the presidential elections from Oct. 15 to Nov. 15, 2016 generated three separate topics about the elections and civil rights. The first topic was a merged topic of election and civil rights, the second topic was about voting participation, and Electoral College, and the third topic was about Hillary Clinton’s email controversy. A sample of tweets classified by these three topics in this time period are listed in Appendix to provide accuracy and context for the topic labels.
Figure 4 Content evolution of **election** and **civil rights** topics in relation to events in the news media using the top twenty words that form each topic. The six time periods were selected to illustrate the merging of the two topics and the largest shifts in the content evolution of the two topics. The two topics merged in Nov. 15, 2015 – Dec. 15, 2015 and Oct. 15, 2016 – Nov. 15, 2016 time periods.

Figure 5 illustrates the content and strength evolution, and popular term frequencies of “election” and “civil rights” topics. The term Trump was used more than four times than Clinton or any other candidates for the majority of the whole time period. This finding agrees with and amplifies Gamio and Brochers (2016)’s analysis results on the Goggle News.
homepage which revealed that Trump appeared on the news twice as more than Clinton did. Unsurprisingly, fluctuations in the intensity of term frequencies for candidates were associated with the events in news media about the primaries and candidate campaigns. For example, conversations about the candidate, Ted Cruz, declined soon after he suspended his campaign for presidency. Similarly, the mentions about Bernie Sanders started to decline right before Hillary Clinton was nominated for presidency by the Democratic Party (Figure 5.a). In addition, the civil rights topic exhibited high frequencies for the terms police, cop, black and white between Jul. and Aug. 2016 as a reaction to the police killings of two black individuals, and the statements of the candidates about this event. (Figure 5.b).

![Graph showing term frequencies](image)

Figure 5. Probability of the top five contextual terms in (a) election topic: trump, hillary, bernie, obama and cruz. (b) civil rights topic: black, white, women, racist, police and cops.

4.3 Spatiotemporal and semantic patterns

Spatio-temporal and semantic patterns can be explored using the web-based geovisual analytics environment at the link: http://www.geo-social.com/topicviz/mentiontopics.html.

In order to capture the context related to the study period related to elections, the visual
analytics environment uses election and civil rights topic chains with their semantic and spatiotemporal evolution. However, this environment can easily be configured to visualize other topics and topic chains, as well. A snapshot of the environment is illustrated in Figure 6. The environment is composed of three coordinated panels: a temporal panel, a topic panel and a map panel. The temporal panel consists of a bar chart for depicting the strength evolution of the two topics over each of the overlapping time intervals, and a time slider for changing the time interval. The bar chart illustrates the strength evolution (popularity) of civil rights (blue) and election (orange) topics over time, and the merging of these two topics throughout the entire period. The topic panel includes a word cloud of commonly co-occurring words that define each topic within the selected time interval, and a drop-down list that allows switching between the topics for map display if there are more than one topic within the selected time interval. Finally, the map panel includes a county-level choropleth map illustrating the probability of the selected topic within a selected time interval. The user can move the time slider to switch between the time intervals, and visualize the topics within each time interval. The map panel is updated to illustrate the spatial patterns of a selected topic using the dropdown list. The three color hues are used to link the three panels. Orange illustrates election-related topic, blue illustrates civil rights topics, and purple illustrates merged topic. Notice that there could be more than one topic from the same category (e.g., two election related topics). While color hue is used to distinguish civil rights, election, and merged topics, color brightness is used to distinguish topics within the same category. The topic probabilities of civil rights, election and merged topics in all time periods for each county were combined onto the same number line, and a quantile classification was applied to derive eight classes. Figure 6 illustrates the spatial, temporal and semantic patterns from
the last time period: Oct. 15 – Nov. 15, 2016. The choropleth map in Figure 6 illustrates the spatial distribution of topic 35 which is selected in the dropdown list, and marked with a thick outline around the topic word cloud in the topic panel.

Figure 6. The geovisual analytics environment for exploring semantic and spatiotemporal evolution of election and civil rights topics on Twitter.

In order to summarize the findings of the pattern exploration phase, small multiples of the choropleth time series for the civil rights and election topics are provided in Figure 7. The first period was Feb. 1 – Mar. 1, 2016, which represented a significant increase in the probability of civil rights topic (Figure 6) due to the starting of the primary elections. The election topic (Figure 7.a) highlighted local hotspots in the upper North East, New Mexico, Colorado, Florida, Tennessee, the coastal areas in the Carolinas, and suburban areas
surrounding big cities such as Minneapolis, Chicago, and New York City. Most of these areas were the places that primaries were held in February 2016 and the following time period in March 2016. Civil rights resulted in higher intensity of conversations across the Nation with a focus on racial and gender related conversations (Figure 7.b). The second period was Jul. 1 – Aug. 1, 2016, which marked the end of Democratic primaries. Distinct shifts in the content evolution of the election and civil rights topics were observed in this time period (Figure 7.c-d). The terms Trump, Hillary and Bernie remained to be dominant, while the other candidates did not appear in the top co-occurring words in election discussions. Many of the hotspots of the election topic from earlier time periods remained to be similar in geographic distribution such as the upper North East, New Mexico, and Colorado, and surrounding areas of the large metropolitan cities such as Chicago and New York City. As compared to other time periods, content of the civil rights topic was related to black-lives-matter movement and the conversations ignited by the black killings happened in early July (Figure 7.d). Although the topical content was specific to the discussions of racial bias, the civil rights topic in this time period was lower in intensity, and locally-varying in its geographic distribution. The third period was Sep. 15 – Oct. 15, 2016 (Figure 7.e-f). The election topic was primarily about the debates happened in Sep. 26, and Oct. 9, while the civil rights topic included gender rights back in the top co-occurring words. Both temporal and geographic intensity of the civil rights topic was higher as compared to the previous period in Jul. – Aug, 2016.

Finally, the fourth period was Oct. 15 – Nov. 15, 2016 (Figure 7.g-h), which included the conversations prior to and a week after the Presidential Elections on Nov 8, 2016. There were three interrelated topics about elections and civil rights (Figure 6). The first topic in this period was about voting behavior and activity. The second topic was about Hillary Clinton’s
email controversy and the FBI investigation. The third topic was the merged topic of election results and civil rights debates among people. Figure 7.g-h illustrates the geographic and semantic patterns of the first and the third topic. Overall, the intensity of the election topic was less than one third of the merged topic in this time period, and the election topic was primarily about users’ share of voting activity (Figure 7.g). The third topic was the merged topic of civil rights and election during this period (Figure 7.h), which had the highest intensity (probability) across all time periods. The topic included the candidates Trump and Hillary within the top 20 words alongside with the civil rights related terms such as black, white and women; voting terms such as voted and vote; and the terms such as racist and respect. In comparison to the probability of election and civil rights topics in all time periods, this topic was widely discussed across the country with higher intensity (Figure 7.h).
4.4 Topics of reciprocal mentions versus user-aggregated tweets

To identify similarities and differences between the content generated by individual users and the content of reciprocal mentions, tweets were aggregated by users into documents for each of the overlapping time windows, and topic models were trained using the user-aggregated
document collection per time period. Because there is no justifiable reasoning for removing of mentions from user-generated content, both mentions and replies were kept in user-aggregated documents. An empirical evaluation was then performed to answer the following questions: Are there specific topics covered in reciprocal mentions but not in user-aggregated tweets and vice versa?

The topics derived from user-aggregated tweets were compared to topics of reciprocal mentions in terms of the distinct topics between the two models, and the average percentage of overlapping topics within each model. Distinctness was measured by the number of topics that had similarity greater than or equal to 80% between the user and mention model for each of the time period. On the other hand, within topic overlap was measured based on the average pairwise similarity between all topics within each model across the whole time period. Overall, user topics generated more distinct topics than the mention topics (Figure 8.a), however, user topic models resulted in higher overlap within the same model, while mention topics produced less overlapping topics across the whole time period (Figure 8.b). In addition to distinctness and within-model overlapping, there is also strong overlapping of topics among the user and mention models throughout the whole time period. A significant part of this overlap can be explained by the inclusion of mention tweets in the user-aggregated documents. Otherwise, exclusion of tweets that include mentions would result in bias in terms of the true representation of each individual’s posts.
In order to highlight the differences between the two topic models, Table 2 illustrates the comparison of mention and user topics for the last time period which covers the presidential elections: Oct. 15 – Nov. 15, 2016. Topic modeling by user-aggregated documents generated 7 topics related to election and civil rights. These topics were strongly overlapping with each other in this time period. The two distinct user-topics are related to news sharing (topic 36 Table 2) and second screening or live-tweeting about the elections (topic 48 in Table 2). These two topics have the least similarity with the mention topics as well as with the rest of the user topics. While the minimum similarity among the topics 0, 3, 24, 28 and 40 was 76% for the topics 24 and 40; the topic 36 was most similar to topic 48 with 52%, and the topic 48 was most similar to topic 28 with 61%. As stated earlier, the fact that the mention topics have strong overlap with user topics can be explained by the presence of reciprocal conversations within the user topic models.

Overall, user-topics were generally formed by personal views with partisan content, mention topics included debates, arguments, and words used in conversational discourse. The results of the comparison revealed that the majority of civil rights and election topics were
discussions and debates among people with opposite views. Sample tweets provided in Appendix illustrate that these opposing view were not always between Democrats and Republicans, but also between Democrats with different views (e.g., the supporters of Bernie Sanders and Hillary Clinton).

Table 2 Comparing user and mention topics related to elections and civil rights

<table>
<thead>
<tr>
<th>User topics compared to mention topics</th>
<th>ID</th>
<th>Topic words</th>
<th>Prob.</th>
<th>Target ID</th>
<th>% Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>trump, donald, women, gop, trump’s, president, white, hill-</td>
<td>0.01562</td>
<td>49</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>trump, clinton, hillary, election, obama, campaign, video, wikileaks, fbi, news, emails, russia, media, law, donald, debate, fraud, voter, black, police</td>
<td>0.01384</td>
<td>49</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>trump, hillary, vote, obama, media, america, clinton, country, hrc, corrupt, news, american, president, truth, corruption, lies, cnn, americans, liberal, job</td>
<td>0.01983</td>
<td>49</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>trump, white, president, country, america, vote, racist, voted, election, women, hillary, black, years, support, obama, donald, voting, supporters, american, respect</td>
<td>0.0756</td>
<td>10</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>trump, election, party, years, vote, point, read, media, political, candidate, voters ,white, agree, work, wrong, gop, lot, left, real, true</td>
<td>0.04967</td>
<td>35</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Trump, vote, president, hillary, election, donald, america, clinton, voted, win, won, voting, country, wins, obama, votes, electoral, college, florida, years</td>
<td>0.07471</td>
<td>35</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>election, vote, trump, america, women, watching, read, woman, debate, news, voted, work, years, watch, white, live, country, voting, hope, president</td>
<td>0.05323</td>
<td>35</td>
<td>0.54</td>
<td></td>
</tr>
</tbody>
</table>

Mention topics compared to user topics

<table>
<thead>
<tr>
<th>ID</th>
<th>Topic words</th>
<th>Prob.</th>
<th>Target ID</th>
<th>% Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>trump, white, racist, country, president, vote, america, women, black, agree, hillary, support, voted, point, understand, ppl, change, opinion, wrong, respect</td>
<td>0.07051</td>
<td>28</td>
<td>0.9</td>
</tr>
<tr>
<td>35</td>
<td>Vote, trump, election, voted, voting, hillary, won, votes, win, party, president, bernie, electoral, clinton, college, polls, candidate, voters, popular, elections</td>
<td>0.02699</td>
<td>40</td>
<td>0.81</td>
</tr>
<tr>
<td>49</td>
<td>trump, hillary, clinton, obama, emails, hrc, media, president, bush, election, corrupt, donald, fbi, gop, campaign, lies, rape, news, lying, russia</td>
<td>0.01873</td>
<td>24</td>
<td>0.84</td>
</tr>
</tbody>
</table>

5 Discussion and Conclusion

Extracting the semantic evolution and spatio-temporal patterns from an interpersonal
communication network is critical for a comprehensive understanding of the variation in conversational discourse, the changing dynamics of interpersonal ties, and the digital traces of social events. Besides the privacy issues and unavailability of data, it is challenging to study interpersonal communication since a comprehensive analysis requires simultaneous consideration of the social network connections, semantic and spatio-temporal variation in communication among individuals. From a methodological perspective, this paper introduced (1) a workflow for modeling topics and extracting the evolution of conversational discourse in an interpersonal communication network; (2) a new network modeling approach to project connection characteristics and semantics of communication onto geographic space and time; (3) a web-based geovisual analytics environment for extracting semantic and spatio-temporal evolution of topics in a spatially-embedded and time-stamped interpersonal communication network. The proposed framework is generic and can be applied to a variety of human communication datasets. From a thematic perspective, the findings of this paper contributes to the analysis and evolution of topical themes during the period of 2016 primary and presidential elections in the U.S. The results revealed that the large portion of the topics extracted from mention tweets were related to daily life routines, human activities and interests such as school, work, sports, dating, wearing, birthday celebration, music, food and second screening. On the other hand, political conversations were split into civil rights and election topics. Civil rights and election topics were also temporally consistent, however, both topics evolved significantly in terms of their content and intensity over time. Hotspots of where these conversations took place changed based on events such as political debates, primaries, police killings as well as the election results. Our results confirm the findings of the previous work such that Twitter functions both as a social network that is geographically
close with each other, and as a news distribution network in which individuals are geographically far apart from each other (Koylu, 2018a; McGee, Caverlee, & Cheng, 2011).

The comparison of topics generated by user-aggregated tweets versus the topics of reciprocal mentions showed both distinct and overlapping content between the two models. User topics generated more distinct topics, however, within-model overlapping was higher in user topics than the mention topics. In addition, the two topic models illustrated strong overlapping content, which can be attributed to the inclusion of mention and replies in user-aggregated tweets for training the user topic models.

There are a number of limitations to this study. First, demographics of twitter users are heavily biased towards younger age groups and cannot be reflective of the general population. Moreover, mention and reply tweets represent only a small portion of interpersonal communication which mostly happen in person, through phone calls, text messaging, and video conferencing. However, the approach introduced in this paper can readily be applied to any form of communication data with spatial information in order to discover semantic and spatio-temporal evolution of conversational discourse without revealing privacy of individuals. Also, geo-located mention and reply tweets used in the case study represent only a sample of all mention tweets. Constrained by the opt-in behavior of users for geographic location, the dataset does not include all mention tweets. Future work is needed to increase the completeness of the mention network for a more comprehensive analysis of the conversational discourse on Twitter.

This paper introduced an analysis of a monthly resolution of reciprocal communication due to the sparsity of geo-located tweets. There is a need to develop a multi-scale resolution for capturing the evolution of topics and spatio-temporal patterns at different
levels of space-time granularity. This would allow detecting hourly, daily, weekly, seasonal, and cyclical patterns of communication, and better understand the variability of conversational discourse. Another potential direction for future work is to differentiate the topical context by taking into account the network structures in the online community (Smith et al., 2014). Different mechanisms and processes are behind spatio-temporal patterns of topics. For example, an increased intensity of a topic in a geographic area may indicate the local community’s response to a local event such as a primary election. However, the intensity of a topic probability could also be caused by users who are outside the area with strong connections with individuals within the area. Therefore, a node-link diagram that illustrate the ego-centric network of each area, and an analysis of network structures and characteristics would be beneficial to better understand the channels for information diffusion.

Sentiment analysis would be another potential direction for analyzing reciprocal communications. One can measure the impact of events on the diffusion of information by capturing the sentiment in conversational discourse. This would help predict the relative support of individuals in political campaigns, and understand how sentiment evolves through social networks and time. Future work can also be done to predict the factors that influence voter sentiment. Also, geo-social network modeling approach introduced in this paper uses the number of connections for determining the geographic neighbors in the neighborhood selection process. Alternatively, one can incorporate a measure of topological similarity such as one that considers the network structure (triads), or measures such as centrality, and clustering coefficient within the neighborhood selection process.
6 Acknowledgements

The author greatly appreciates the constructive comments and suggestions from anonymous reviewers and the participants of the International Symposium on Location-based Social Media and Tracking Data, A Pre-conference Symposium of ICC 2017.
References

8 Appendix

Table 3 Election-related mention topics and sample tweets in 10/15/2016 - 11/15/2016

<table>
<thead>
<tr>
<th>Topics</th>
<th>Mention tweets</th>
<th>Topic Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10: trump, white, racist, country, president, vote, america, women, black, agree, hillary, support, voted, point, understand, ppl, change, opinion, wrong, respect</td>
<td>A: @B if you're in our country illegally; what he says shouldn't matter. They not suppose to be here in the first place</td>
<td>0.94</td>
</tr>
<tr>
<td>T35: trump, hillary, clinton, obama, emails, hrc, media, president, bush, election, corrupt, donald, fbi, gop, campaign, lies, rape, news, lying, russia</td>
<td>B: @A everyone has their own prejudices but that doesn't make us racist; by definition.</td>
<td>0.92</td>
</tr>
<tr>
<td>T49: vote, trump, election, voted, voting, hillary, won, votes, win, party, president, bernie, electoral, clinton, college, polls, candidate, voters, popular, elections</td>
<td>A: @B if you're in our country illegally; what he says shouldn't matter. They not suppose to be here in the first place</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Mention tweets:

A: @B if you're in our country illegally; what he says shouldn't matter. They not suppose to be here in the first place
B: @A everyone has their own prejudices but that doesn't make us racist; by definition.
A: @B I have never met a racist Democrat nor have I ever met a Trump supporter who wasn't a racist.
B: @A I have never met a racist Democrat nor have I ever met a Trump supporter who wasn't a racist.
A: @B so then that plays on both sides. By no means am I saying racism doesn't exist; but I'm saying that while there are prejudices
B: @A I have never met a racist Democrat nor have I ever met a Trump supporter who wasn't a racist.
A: @B I challenge that. While I don't agree with Trump or his platform or actions but you can't generalize and say any one who
B: @A everyone has their own prejudices but that doesn't make us racist; by definition.
A: @B I have never met a racist Democrat nor have I ever met a Trump supporter who wasn't a racist.
B: @A everyone has their own prejudices but that doesn't make us racist; by definition.
A: @B supports him is racist.
B: @A if someone can vote for him after the things he has said about various groups of people; then they're racist and full of hate.

A: @B don't have to. There are Muslims who are considering going against their religion to avoid hate crimes against them
B: @A no decent person just changed their mind about sexual assault or about discrimination over night
A: @B are you kidding me?
B: @A The people who think that's okay; would still have that mind set if Clinton was elected. Sorry but I don't agree.
A: @B There are Muslims who have already done that!! Since 9/11!! Trump is not to blame for people being racist
B: @A if someone can vote for him after the things he has said about various groups of people; then they're racist and full of hate.
A: @B did Trump say some racist things about Muslims? YES. But he isn't the core problem. And Hillary is not a solution.
B: @A once again I disagree.
A: @B Truth doesn't care if your female or male! She lied and that's the truth!
B: @A So trump did not lie? please explain that logic; you whites has handed over a regime and tht is now terrorizing jews.
A: @B Please show where trump did not lie

A: @B if you're in our country illegally; what he says shouldn't matter. They not suppose to be here in the first place
B: @A everyone has their own prejudices but that doesn't make us racist; by definition.
A: @B I have never met a racist Democrat nor have I ever met a Trump supporter who wasn't a racist.
B: @A if someone can vote for him after the things he has said about various groups of people; then they're racist and full of hate.
A: @B I'm racist??? Lol you must not know me
B: @A yes yes and yes. Your statement was racist PERIOD before you try to insult the intelligence of blacks get your facts straight!
B: @A I have more than 1 black friend; lol be direct girl.
A: @B whoaaaaa don't wanna be black but good try. I'm proud of my nationality. I'm Puerto Rican babygirl

A: you voter Id is on here______ @B
A: just looking out for you. @B
B: @A didn't you vote for Bernie sanders?
A: @B Nope; voted Hilary because I prefer her over stupid Trump. Voting for Bernie would have divided the votes against trump. Sadness

A: @B Not necessarily what I'm saying. Just who casted those different votes. Plenty of Obama-Trump voters.
B: @A Trump won critical battleground precincts that Obama won two elections in a row. Hillary was just a bad candidate.

A: @B @C she got destroyed 2nd and 3rd debate. Lmao I could care less what liberal media polls say
B: @A i dont think you understand how scientific polls work @C
A: @B the same scientific polls that said brexit wouldn't happen and that Trump wouldn't win the nomination? Lol good try
A: @B brexit is nothing like this election

A: @B Hillary won the popular vote
A: then why did you say that the majority of the country wanted trump @B
B: @A Worded badly. While she won the popular vote; he won a majority of states and swing states.

A: @B As a Sanders supporter who was told 2 get over the DNC rigging the primary; Hillary supporters r being whiny & hypocritical
B: @A I wish Hillary was as good at rigging things as was theorized...we could use a Corrupt Bargain about now.
A: @B The DNC emails prove it; as do the ones showing Brazile gave Hillary debate questions:
A: @B Sanders polled better against Trump too; but they had to have their pro-fracking; pro-pipelines; corrupt warmonger.

B: @A Look; I don't want to argue anymore. You did it. You won. Kick us wonks out and fight populism with populism. Best.
A: I wasn't arguing; just pointing out what Hillary supporters had done and what they are doing. Peace.
A: @B Peace; dude. We're still on the same side ;)
B: @A Peace to you; too.
A: @B Here here! To 2018! I think the Sanders org will be a midterm game-changer.
A: @A You know it man ;)

A: @B You are wrong; NEVER; he absolutely never said he thought the election was rigged; even if it was rigged in Florida.
A: @B It is how you frame a question. Gore's challenge wasn't about 'rigged elections' it was about counting votes in Miami Dade.
A: @B It is not semantics; I don't think you truly understand what 'not accepting' the election results as Donald Trump just said.
A: @B It also matters when it is said BEFORE the election or AFTER the election. Donald Trump is preemptively saying it is rigged.
B: @A Dude...I asked a ?. Put your undies back in place. But didn't Gore challenge the results in court? That's not accepting to me.

A: @B So; semantics. One says it and people get upset. The other 'challenged' the outcome; and that's okay?
B: @A How many other ways is there to say what he said? Both sound like losers.
A: @B Well...there are the DNC emails your candidate was involved in. Look like those things really happen.
B: @A It clearly pointed to Hillary being their choice to face the GOP; no matter how much was better
A: @B Cheating is Cheating. Fix is Fix. Kinda Black and White to me.